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Soliton collisions in the discrete nonlinear Schro¨dinger equation

I. E. Papacharalampous,1 P. G. Kevrekidis,2 B. A. Malomed,3 and D. J. Frantzeskakis1

1Department of Physics, University of Athens, Panepistimiopolis, Zografos, Athens 15784, Greece
2Department of Mathematics and Statistics, University of Massachusetts, Amherst, Massachusetts 01003-4515, USA

3Department of Interdisciplinary Studies, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
~Received 27 December 2002; revised manuscript received 2 June 2003; published 13 October 2003!

We report analytical and numerical results for on-site and intersite collisions between solitons in the discrete
nonlinear Schro¨dinger model. A semianalytical variational approximation correctly predicts gross features of
the collision, viz., merger or bounce. We systematically examine the dependence of the collision outcome on
initial velocity and amplitude of the solitons, as well as on the phase shift between them, and location of the
collision point relative to the lattice; in some cases, the dependences are very intricate. In particular, merger of
the solitons into a single one, and bounce after multiple collisions are found. Situations with a complicated
system of alternating transmission and merger windows are identified too. The merger is often followed by
symmetry breaking~SB!, when the single soliton moves to the left or to the right, which implies momentum
nonconservation. Two different types of the SB are identified, deterministic and spontaneous. The former one
is accounted for by the location of the collision point relative to the lattice, and/or the phase shift between the
solitons; the momentum generated during the collision due to the phase shift is calculated in an analytical
approximation, its dependence on the solitons’ velocities comparing well with numerical results. The sponta-
neous SB is explained by the modulational instability of a quasiflat plateau temporarily formed in the course of
the collision.
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I. INTRODUCTION

The discrete nonlinear Schro¨dinger~DNLS! equation is a
ubiquitous dynamical-lattice model with many applicatio
@1#. Its physical realizations include arrays of coupled opti
waveguides@2,3# and Bose-Einstein condensates~BECs!
trapped in strong optical lattices@4#. It is also relevant to
many other problems, such as denaturation of the D
double strand@5# and the envelope-wave expansion for no
linear Klein-Gordon models on lattices@1#.

Optical waveguide arrays~including virtual arrays in-
duced by a system of laser beams in a photorefractive c
tal @6#! offer the most straightforward experimental impl
mentation of the DNLS system, with the number of latti
sites~guiding cores! up to 40 and the propagation length u
to 15 mm. With the interchannel coupling constantC
.0.5 mm21 @see Eq.~1! below# and nonlinearity coefficien
.5 (m W)21 in semiconductor waveguides, the bea
power ;500 W provides for formation of discrete soliton
with the intrinsic dynamical length&1 mm @3#. Therefore,
the available size of the samples is sufficient to test not o
formation and stability of solitons, but also collisions b
tween them. The study of collisions is a problem of fund
mental significance by itself, and it may find applications
photonics, such as all-optical switching, steering, etc.

An array of BEC droplets trapped in a strong optical l
tice, with ;103 atoms in each droplet, is another physic
system which is directly described by the DNLS equation
the tight-binding limit@4#. In this case, a discrete soliton ca
be easily set in motion by means of a laser beam pushing
condensate.

The objective of the present work is the analytical a
numerical study of collisions between DNLS solitons. Th
far, few publications have addressed the issue. In Ref.@7#,
1063-651X/2003/68~4!/046604~9!/$20.00 68 0466
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collisions were studied in theSalerno model@8#, i.e., a mixed
Ablowitz-Ladik ~AL !–DNLS system, but this was don
close to the integrable@9# AL limit, while consequences of
the strong nonintegrability of the ordinary DNLS syste
were not investigated. Actually, Ref.@7# was dealing with a
collision of a soliton with a reflecting wall, which is tanta
mount to a collision between strictly in-phase solitons of t
on-site ~OS! type, while intersite ~IS; see exact definitions
below! collisions were not considered, nor the case of
phase differenceDf between the solitons other than zero.
this work, we systematically consider various types of co
sions in the DNLS model, as concerns the location of
collision point relative to the underlying lattice, and th
value ofDf.

Numerical results reported in Ref.@7# for the Salerno
model included quasielastic collisions in the case of a la
relative velocity, and merger, interspersed with intermedi
intervals of escape, for smaller velocities~seeds of such find-
ings can be found in an earlier work@10#!. However, no
windows of multibounce escape~with solitons separating af
ter several collisions!, of the type known for kinks~topologi-
cal solitons! in nonintegrable continuum models@11#, were
reported. Very recently, collisions of solitons in a weak
discrete NLS model were addressed in Ref.@12#, but the
system was actually approximated by a perturbed continu
NLS equation, while we aim to consider an essentially d
crete case. The analysis developed in Ref.@12# was based on
the use of the exact two-soliton solution of the unperturb
NLS equation; an effective small perturbation represent
the weak discreteness and acting on the exact solution
shown to make the collision chaotic.

Collisions between solitons in a discrete model with
quadratic @x (2)# nonlinearity were studied numerically i
Ref. @13#. A strong distinction was found there between t
©2003 The American Physical Society04-1
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above-mentioned OS and IS collisions. Generally, the
and IS cases are well known to be energetically differen
static configurations, due to the effective Peierls-Naba
~PN! potential induced by the lattice@1#. It will be shown
below that OS collisions in the DNLS model give rise
transmission or merger, while in the IS case alternation
different outcomes of the collision is more intricate, and
additional possibility is bounce after multiple collisions.
both cases, symmetry breaking~SB! is possible, its stronges
manifestation being a merger of a symmetric soliton pair i
a singlesoliton, which then moves in a certain direction.
fact, the latter outcome of the collision manifests not only
SB proper~which is also possible in soliton-soliton collision
in nonintegrable continuum models@14#!, but also noncon-
servation of momentum: the momentum of the eventua
emerging moving soliton is created ‘‘from nothing,’’ as th
initial momentum of the colliding soliton pair was zero. Th
effect is quite generic, as it was also observed in the cas
the dynamical-lattice model with thex (2) nonlinearity in Ref.
@13#. In this work, we give an explanation to this effec
which includes two different mechanisms: spontaneous
deterministic SBs. In the former case, the SB is initiated
small random perturbations, while in the latter case the S
hidden in the initial conditions~initial positions and the
above-mentioned phase differenceDf of the two solitons!.

The rest of the paper is organized as follows. In Sec.
we start the analysis of the soliton-soliton collision with
analytical approach based on the variational approximat
which makes it possible to predict most basic features of
collision. In Sec. III, we summarize the collision phenom
enology found from systematic numerical simulations.
the above-mentioned symmetry breaking and momen
nonconservation are quite remarkable features of the c
sions, in Sec. IV we specially focus on them, combini
analytical and numerical considerations. Section V conclu
the paper.

II. VARIATIONAL APPROXIMATION FOR THE
COLLISION PROBLEM

We take the DNLS model in its usual form,

i u̇n52CD2un2uunu2un , ~1!

where un is the complex amplitude of the electromagne
field in thenth channel, in the case of the waveguide arr
or the mean-field wave function at thenth site, in the BEC
system. The overdot stands for the time derivative~‘‘time’’ is
actually the propagation distance in the case of the wa
guide arrays!, D2un5un111un2122un is the discrete La-
placian, andC is a positive coupling constant.

To gain analytical insight into the soliton-collision prob
lem, we make use of the variational approximation~VA; a
recent review of the technique can be found in Ref.@15#!.
For immobile DNLS solitons, VA can be implemented an
lytically @17# and/or numerically@18#. However, in the case
of the collision between discrete solitons, direct VA genera
equations which are difficult even to write down in an e
plicit form. For this reason, we take a simpler path that yie
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a tractable set of equations, and, eventually, leads to v
approximate but meaningful results.

To this end, the DNLS equation is replaced by its co
tinuum counterpart, with the commonly known Lagrangia
*2`

1`@ i (u* u̇2uu̇* )2uuxu21uuu4#dx, while the Ansatz~trial
wave form! is taken as a combination of twospikes, which
are mirror images to each other:

u5A exp@2W21~ uxu2j!1 ib~ uxu2j!#, uxu.j, ~2!

u5A exp@2W21~j2uxu!1 ic~j2uxu!#, uxu,j ~3!

~spikes in variational equations were considered in so
works in different contexts@16#!. It should be mentioned tha
the continuum limit of the DNLS equation is, by itself, a
integrable NLS equation, in which collisions betwee
smoothsolitons are elastic. However, we employ the spik
to emulatediscretesolitary waves with centers located at th
points x56j(t) in the version of the system which is fa
from the continuum limit.

It should also be highlighted that, in a certain sense,
substitution of a spike-shapedAnsatz~i.e., a discreteness
motivated one! in the continuum Lagrangian of the model
the exact inverse of the time-honored approach of insertin
continuum Ansatzin the discreteLagrangian of the mode
~see, e.g., Ref.@1#, and references therein!. Hence, just as the
latter continuum-in-discreteapproach has proved very su
cessful in the study of discreteness effects~chiefly, static
ones!, we expect~and confirma posteriori by the results
obtained below! that thediscrete-in-continuumapproach pro-
posed here can capture key aspects of the discrete-so
dynamics.

Besidesj, other variational parameters inAnsätze ~2!
and ~3! are the complex amplitudeA(t), real width W(t),
and outer and inner wave numbersb(t) andc(t). Using the
Ansätze, we derive a system of the Euler-Lagrange equatio
for the variational parameters:

b5
1

2 F ~22e2h!
d

dt S W

22e2hD 1
d

dt
~Wh!G , ~4!

c5
22e2h

2~12e2h!

d

dt FW@12~11h!e2h#

22e2h G2
1

2

d

dt
~Wh!,

~5!

db

dt
1@12~11h!e2h#

dc

dt
1h~22e2h!

d

dt Fb2c~12e2h!

22e2h G
5

2

W3
~22e2h!2

E

2W2

22e22h

22e2h
, ~6!

d

dt F2
1

W2
2

b21~12e2h!c2

22e2h
1

E

2W

22e22h

~22e2h!2G50.

~7!
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Here h[2j/W, and E[(2`
1`uunu25uAu2W@22exp(22j/

W)# is the conserved power in the waveguide array, or nu
ber of atoms in BEC.

For two far separated solitons, which correspond toh→`,
the Ansatzsplits into solitary spikes. In this case, Eqs.~4!–
~7! show thatb,c, and W are constant, so thatW58/E
~hence,uAu5E/4) and

b52c5 j̇, ~8!

i.e., according to Eqs.~2! and ~3!, each individual spike is
symmetric,6b57c being its velocity.

Equations~4!–~7! were solved numerically for variou
initial values 2j0 of the separation between the solitons a
their widthsW0 and velocities6 j̇0, the latter being defined
by the initial valuesb052c0 as per Eq.~8!. Typical findings
are shown in Fig. 1. A drastic difference between the case
large and small initial velocities is seen in the evolution
the inner wave numberc(t), and in the difference betwee
temporal scales: in the former case, abounceof the spikes is
predicted, which is seen in the explosion ofc(t) ~the explo-
sion does not make it possible to explicitly continue the
tegration for larger values oft); divergence ofc implies a
very large velocity of the solitons, according to Eq.~8!, i.e.,
a bounce indeed. On the contrary, for small initial velocit
the solution gets stuck withb,c,j→0, andW'const. In this
limit, Eqs. ~4!–~7! describe asingle immobile symmetric
spike with the powerE. Thus, VA predicts that the collision
of two solitons with large velocities leads to bounce, wh
the collision with small velocities gives rise tomergerof the
solitons. Despite the simplistic nature of the approximati
it correctly predicts basic features of the collision; see bel

III. NUMERICAL SIMULATIONS

Proceeding to numerical analysis of the collisions, it
necessary to mention a long-standing debate on the exist
of exact traveling-soliton solutions in the DNLS model@19#.
Due to the presence of the PN potential, one may exp
resonances produced by motion of the soliton, similar
ones that are well known for kinks in discrete models@20#,
where they give rise to permanent leakage of the kin
energy from the moving soliton. However, this issue is
rather formal one: even if traveling solitons do not exist
the rigorous sense, numerical works clearly show that
distance at which such structures cease propagating is l
hence they may be readily observed in the experiment, wh
makes it relevant to consider collisions between them.

The motion of a soliton at a velocityv is supported by a
phase gradientk across it@see Eq.~8!#. In Eq. ~1!, a rough
relation between them isv;CDc/a, whereDc is the phase
shift between the fields at adjacent lattice sites anda is the
lattice spacing. In the case of discrete solitons, the mos
teresting situation for collisions is expected when the ch
acteristic soliton’s diffraction time/distance,tdiffr;a2N2/C
(N is the number of sites in the soliton!, is comparable to the
collision time/distance,tcoll;aN/v. It follows from these es-
timates that nontrivial collisions are expected if the solito
04660
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are ‘‘pushed’’ by lending them the intersite phase shiftDc
;1/N ~note thata andC drop out from the estimate!.

For systematic simulations, we used initial conditio
suggested by the AL model, where analytical expressions
moving discrete solitons are available@the spike Ansatz
based on Eqs.~2! and ~3! was also used as the initial con
figuration, yielding similar results#. Thus, a superposition o
two far separated pulses was taken att50, with common
amplitudeB and widthW,

u05B sech@W21~n2x1!#exp@ ia~n2x1!1~ i /2!Df#

1B sech@W21~n2x2!#exp@2 ia~n2x2!2~ i /2!Df#,

~9!

wherex1,2 are the positions of their centers,Df is the initial
phase shift between them, and the wave numbera deter-
mines the initial speed, cf. Eq.~8!. We fix W51 ~other val-
ues of the width produce very similar results! and usea as a
main control parameter, as changinga is tantamount to vary-
ing the initial velocity.

Analysis of numerical results demonstrates that three
ferent values of the amplitude, viz.,B5sinh(1/W)'1.175,
which corresponds to the AL soliton,B51, corresponding to
the continuum NLS limit, and a smaller value,B
51/sinh(1/W)'0.851, provide for adequate description
the relevant phenomenology. Although these values are
very different, the results obtained for them may differ co
siderably. We also varied the initial coordinatesx1 andx2, so
as to place the collision center at different positions relat
to the lattice. We will thus consider OS and IS collision
with the central point located, respectively, on site or a
midpoint between sites, as well as a ‘‘quarter-site’’ collisio
Finally, the comparison of results obtained for different v
ues of the phase shiftDf also reveals important peculiarities
which will be considered in detail below; in this section, w
present basic results for the collisions between in-phase
tons, with Df50. Outcomes of the collisions are readi
identified, plotting trajectories of the center of mass of ea
soliton in the (x,t) plane, see Figs. 2 and 3 below.

We start with OS collisions between in-phase solito
(x1,25630,Df50) in the caseB51. The first result is that,
if the velocity parameter takes values from 0,a,0.7755,
the colliding solitons merge into a single pulse~subsequently
remaining at the collision point!. Further, two distinct inter-
vals are identified inside this region: 0,a,0.711, where the
two solitons fuse into one after a single collision, a
0.711,a,0.7755, where the fusion takes place after m
tiple collisions~the latter case may be employed for contr
purposes in optical applications: a solitary pulse which te
porarily reappears between two collisions can be affected
an external signal!. For a.0.7756, the collisions is quasi
elastic, i.e., the solitons separate. Note that basic feature
this phenomenology~barring sophisticated peculiarities, suc
as the fusion after multiple collisions! are correctly predicted
by VA.

In the same OS configuration, but with a larger amplitu
B51.175, the solitons cannot collide at all ifa belongs to a
‘‘stop band,’’ a,0.550, as in this case free solitons a
4-3



f

-
-

d
-
s

f

PAPACHARALAMPOUSet al. PHYSICAL REVIEW E 68, 046604 ~2003!
FIG. 1. Two different cases o
the collision as predicted by VA
for the initial separationh0510.
Four top and bottom panels corre
spond, respectively, to the colli
sions with large (c52b55) and
small (c52b51) initial veloci-
ties. In the former case, the spee
c explodes as the solitons ap
proach each other, which implie
bounce, while in the latter casec
drops to zero, implying merger o
the solitons.
c
th
to

r-

li-

r

to
in
ef.
quickly trapped by the lattice. This is explained by the fa
that taller pulses encounter a higher PN barrier, hence
need larger kinetic energy to overcome it. Above the s
band, viz., in the interval 0.550,a,2.175, the solitons
move freely and collide, which results in merger~after mul-
tiple collisions, ifa is close to the upper border of this inte
val!. Quasielastic collisions take place ifa.2.175.
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t
ey
p

For the OS configuration, but with a smaller initial amp
tude, B50.851, a different feature is found in intervalsa
,0.203 and 0.281,a,0.3. There, the solitons merge afte
multiple collisions, which is accompanied by notablesymme-
try breaking~SB!: the resultant pulse moves to the left or
the right, at a well-defined value of the velocity, as is seen
Fig. 2. This feature resembles strong SB observed in R
4-4
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FIG. 2. The on-site collision (x1,25630) in
the most interesting case, with the amplitudeB
50.851. Intervals of merger with spontaneo
symmetry breaking are separated by regions
quasielastic collisions. In all the cases display
here,C50.5.
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as it
@13# in simulations of solitons collisions in lattices with th
quadratic nonlinearity. We have checked that SB in
present model~as well as the other above-mentioned o
comes! is not a numerical artifact: rerunning the simulatio
with higher accuracy produces no change in the results.
tween these intervals, i.e., at 0.203,a,0.281 and ata
.0.3, only quasielastic collisions occur.

Symmetry breaking was also observed in collisions
solitons in nonintegrable continuum models of the NLS ty
@14#. However, in continuum systems SB is constrained
the momentum conservation. The lack of the moment
conservation in the~nonintegrable! lattice makes the SB
more dramatic in the DNLS model. In fact, there are tw
different mechanisms that explain this effect:spontaneous
SB in the case of in-phase collisions, withDf50, and an
additionaldeterministicSB in the caseDfÞ0. Both mecha-
nisms will be considered in detail in the following section

For IS collisions we anticipate a significant change in
phenomenology, as in this case the collision point is a
local maximum of the PN potential, whereas in the OS c

FIG. 3. The intersite collision withB51. Trajectories of the
solitons and their eventual profiles~in terms ofuunu2) are displayed.
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it was at a local minimum, hence trapping of the resulti
pulse was more energetically favorable, while the outco
of IS collisions may be more sensitive to the initial kinet
energy ~differences between OS and IS collisions inx (2)

dynamical lattices were reported in Ref.@13#!. In fact,
changes in the initial velocity, which give rise to differe
outcomes of the IS collision, decrease by an order of mag
tude in comparison to the OS case~see below!.

IS collisions at the intermediate value of the amplitud
B51, lead to straightforward merger fora,0.061. In the
interval 0.062,a,0.075, spontaneous SB occurs, with m
tual bounce of the solitons after multiple collisions, see F
3. To the best of our knowledge, this is the first example o
multiple-bouncewindow in a dynamical-lattice model, which
may be compared to what was found for kinks in contin
@11#; however, in kink-bearing continuum models, spontan
ous SB~in kink-antikink collisions! is impossible due to the
momentum conservation. The IS collision leads to ordin
merger for 0.075,a,0.089, and quasielastic collisions o
cur ata.0.089.

As in the OS case, IS collisions of pulses with the la
ger amplitude (B51.175) are simpler: the pulses may prop
gate and collide only ifa.0.53; they merge in the interva
0.53,a,0.795, and quasielastic collisions take place
a.0.795. On the contrary, in the case of the smaller am
tude, B50.851, an intricate system of intervals of mult
bounce merger with spontaneous SB was fou
(0,a,0.04; 0.042,a,0.044; 0.046,a,0.049; 0.053,a
,0.055), interspersed with windows of quasielastic co
sions; only quasielastic collisions occur ifa.0.056. It is
noteworthy that, for quasielastic collisions, the time elaps
between the initial collision and eventual separation is
most independent ofa.

Last, in quarter-site collisions~not shown here in detail!,
at all the values ofa examined~with B50.851), separation
of the solitons upon a single bounce was observed, butal-
ways with SB, resulting in asymmetric soliton pairs wit
amplitudes and speeds different from original ones. In t
case, however, the SB is not necessarily spontaneous,
4-5
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may be induced in a straightforward way by asymmetry
the initial configuration relative to the lattice. In fact, a mi
ture of spontaneous and deterministic SB takes place in s
a situation; see below.

IV. DETERMINISTIC AND SPONTANEOUS SYMMETRY
BREAKING, AND MOMENTUM NONCONSERVATION

IN SOLITON-SOLITON COLLISIONS

A. Deterministic symmetry breaking

As mentioned above, a salient feature of the obser
phenomenology is SB. In fact, SB in collisions between s
tons was observed in various nonintegrable models, b
continuum@14# and discrete@12,13# ones. As was mentione
above, in the case where the collision center does not c
cide with an OS or IS point, the symmetry breaking ha
straightforward~deterministic! explanation. In view of the
lack of momentum conservation in nonintegrable dynamic
lattice models, SB also explains the generation of momen
from nothing ~before the collision, the net momentum w
equal to zero due to the symmetry of the two-soliton co
figuration!.

A more subtle but similar situation takes place in the c
where the solitons collide with a nonzero phase differen
i.e., DfÞ0 in Eq. ~9!. Indeed, Eq.~9! implies that, while the
collision center is located at the pointn5(x11x2)/2[x0,
the phase-center point is atñ5x02Df/(2a). The difference
between the two points~in the caseDfÞ0! is a natural
source of the deterministic SB.

It should be noted that a similar deterministic mechanis
based on the phase difference, i.e., mismatch between
collision center and phase-center point, can also explain
in soliton-soliton collisions in nonintegrable continuum mo
els. However, SB-induced effects in continuum models
strongly restricted by the~total! momentum conservation
while the momentum is no longer a conserved quantity in
nonintegrable dynamical-lattice setting. Indeed, a natu
definition of the lattice momentum is

P5 i (
n52`

1`

~cn11cn* 2cn11* cn! ~10!

~this expression goes over into the correct conserved
mentum in the continuum limit, and coincides with the co
served momentum in the integrable AL model@9#!. As fol-
lows directly from the underlying equation~1!, an exact
evolution equation forP is

dP

dt
5 (

n52`

1`

ucnu2cn* ~cn112cn21!1c.c., ~11!

where c.c. stands for the complex-conjugate expression.
fact that the linear part of Eq.~1! yields no contribution to
the evolution of the momentum is natural, as the momen
is conserved in the linear dynamical lattice. The derivation
Eq. ~11! assumes, as usual, the boundary conditionsc(n5
6`)50.

To proceed with the analysis of the momentum nonc
servation, it is necessary to calculate the right-hand sid
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Eq. ~11!, and then perform the time integration. In fact, th
only possibility of obtaining an analytical result is to emplo
a quasicontinuum approximation, setting

cn112cn21'2]c/]n1~2/3!]3c/]n3, ~12!

wheren is treated as a continuous variable. Then, the lowe
order continuum limit of Eq.~1! is

ic t1Ccnn1ucu2c50. ~13!

Substituting approximation~12! in Eq. ~11! and assuming
the boundary conditionsc(n56`)50, we arrive at a result

dP

dt
52E

2`

1`

dnU]c

]nU
2 ]

]n
~ ucu2!. ~14!

Note that the first term~the first derivative! on the right-hand
side of Eq.~12! gives no contribution to expression~14!,
which precisely corresponds to the momentum conserva
in the continuum approximation. As it follows from Eq.~14!,
the net momentum change generated by the collision, wh
is a measure of the momentum nonconservation, is

DP[E
2`

1`

dt
dP

dt
52E

2`

1`

dtE
2`

1`

dnU]c

]nU
2 ]

]n
~ ucu2!.

~15!

One can try to use an exact solution of Eq.~13! for the
soliton-soliton collision, which is provided by the invers
scattering transform@21#, to calculate the integral expressio
in Eq. ~15!. This solution describes the collision between tw
symmetric moving solitons; when they are far separated
reduces to the linear superposition,

c~n,t !5B sechS B

A2C
@~n2x0!12Cat# D

3expS ia~n2n0!1
i

2
~B222Ca2!t1

i

2
Df D

1B sechS B

A2C
@~n1x0!22Cat# D

3expS 2 ia~n1n0!1
i

2
~B222Ca2!t2

i

2
Df D ,

~16!

whereB is the common amplitude of the solitons,62Ca are
their velocities,6x0 are their initial positions, andDf is the
phase shift between them. Note thatB, a, andDf have the
same meaning as in expression~9!.

Substituting the exact two-soliton solution in Eq.~15!,
one can first of all see thatDP, calculated this way, exactly
vanishes ifDf is 0, p/2, p, or any multiple ofp/2. Actu-
ally, the quasicontinuum approximation assumes that
solitons are broad, i.e.,B/A2C!1. This condition facilitates
the calculation of integral~15! with the exact two-soliton
4-6
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solution. Nevertheless, the accurate result is very cum
some. What can be obtained in a simple form is the dep
dence of the generated momentum on the velocity param
a at fixed values ofDf andB:

DP5const3a5expS 22p
A2Ca

B D . ~17!

which assumes thatB/A2C!a.
Equation~17! is more convenient for the comparison wi

results of direct simulations in a logarithmic form,

logS DP

DP0
D55 logS a

a0
D2

2pA2C

B log 10
~a2a0!, ~18!

wherea0 is an arbitrarily fixed value,DP0 being the corre-
sponding value ofDP. A typical result of the comparison o
the analytical prediction~18! with numerical findings is dis-
played in Fig. 4. As is seen, the agreement is reasonable
~as it often happens with results obtained by means
asymptotic methods! it actually extends to a region where th
assumed conditionB!A2Ca does not hold.

B. Spontaneous symmetry breaking

The dependence of the generated momentum onDf is
quite complicated, as is seen in Fig. 5. Nevertheless, for
too small values of the velocity parametera, the generated
momentum indeed shows the trend to vanish atDf50, as
is predicted by Eq.~15!. For very smalla, the situation is
different ~see the panel of Fig. 5 pertaining toa50.03):
conspicuous momentum generation is observed whenDf50
~which is also implied in Fig. 2!. Even in the case o
a50.29, the value ofDP corresponding toDf50 is not
very small, see Fig. 5. On the other hand, the initial confi
ration ~9! with Df50 is completely symmetric~even!, so

FIG. 4. The comparison~on the log scale! of the dependence o
the momentum generated ‘‘from nothing’’ by the soliton-soliton c
lision for Df5p/4, B50.851 @see Eq.~16!#, as predicted by Eq
~18! and found from direct simulations of Eq.~1! with C50.5, for
the on-site collisions.
04660
r-
n-
ter

nd
f

ot

-

thatu0(2n)5u0(n). As the underlying equation~1! is com-
patible with the symmetryn→2n, no deterministic SB is
possible in this case.

An explanation for the SB and momentum generation
the caseDf50 is possible in terms ofspontaneousSB under
the action of small random perturbations~numerical noise,
which emulates noise in the real physical system!. To dem-
onstrate this possibility, we take a typical case, witha
50.29, when conspicuous momentum generation~although
smaller than at finiteDf! is observed atDf50, see Figs. 2
and 5.

In Fig. 6 a set of snapshots of the lattice field is display
around the moment oft5390, at which the SB takes place
and the momentum generation commences, see the p
pertaining toa50.29 in Fig. 2. As is seen~and it is a typical

FIG. 5. The generated momentum vs the phase shift between
colliding solitons for different fixed values of the velocity parame
a. In all the cases,C50.5 and the on-site collisions were simulate

FIG. 6. A set of instantaneous profiles of the lattice fields,uunu2,
in the case of the on-site collision between solitons witha50.29,
B50.851, andDf50.
4-7
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feature observed in many other cases!, the collision gives rise
to temporary formation of a broad quasiflat configuratio
which may be subject to the modulational instability~MI !. In
fact, the panels of Fig. 6 which pertain tot5390 and 392 do
show the beginning of spontaneous SB that may be attrib
to MI. Direct numerical computation of lattice momentu
~10! as a function of time~see Fig. 7! demonstrates a clea
correlation between the beginning of the spontaneous SB
the commencement of the momentum generation.

MI in the DNLS equation can be analyzed following Re
@22#. To this end, a quasiflat field configuration is taken in t
form

cn~ t !5@A1bn~ t !1 icn~ t !#exp~ iA2t !, ~19!

whereA is a constant, andbn and cn are small real pertur-
bations. Spatially even and odd eigenmodes of the pertu
tion are

~bn ,cn!5S 1,
s~k!

4Csin2~k/2!
D b(0)exp@s~k!t#3H cos~kn!

sin~kn!,
~20!

with an arbitrary infinitesimal perturbation amplitudec(0),
real wave numberk, and the corresponding instability growt
rate

s~k!5A8Csin2~k/2!@A222C sin2~k/2!#. ~21!

Note that characteristic values of the instability growth r
~21! which correspond to the quasiflat configuration o
served in Fig. 6 are;1 @recall that Eq.~1! was simulated
with C50.5], hence the time interval within which th
quasiflat configuration exists, which isDt.5, is sufficient
for the development of the instability.

The quasiflat background field configuration shown
Fig. 6 may be roughly approximated by boundary conditio
~BCs!

an~n>6N!50, ~22!

FIG. 7. The total momentum of the lattice field vs time, in t
case of the soliton-soliton collision, details of which are display
in Fig. 6.
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where the size of the background is 2N21 ~in the above-
mentioned example, one may adoptN55, assuming, in the
crudest approximation, that only nine inner sites carry n
zero field!. The BCs~22! imply, in the case of theoddeigen-
mode~20!, sin(kN)50, or

kodd5
pm

N
,m51,2,3, . . . . ~23!

Now, one can substitute the perturbed wave field~19! into
the right-hand side of Eq.~11!, in order to find a contribution
of the perturbation to the momentum nonconservation. A
simple manipulations, we obtain

S dP

dt D
pert

52A3 (
n52`

1`

~bn112bn21!. ~24!

Adopting the above-mentioned approximation, according
which the field, including the perturbation, is limited to th
domainunu<N21, we obtain the following result from Eq
~24!:

S dP

dt D
pert

52A3@bN212b2(N21)#. ~25!

From expression~25! it follows that only odd perturbation
modes may contribute to the momentum nonconservat
see Eq.~20!. Indeed, the presence of a small symmet
breaking perturbation on top of the quasiflat backgrou
which may be accounted for by an odd mode, is eviden
Fig. 6. If it is taken in the form~20!, and expression~23! for
k is taken into regard, the eventual result is

S dP

dt D
pert

52~21!m21b(0)A3sinS pm

N DexpFsS pm

N D t G
~26!

@recall thats(k) is defined in Eq.~21!#. An important feature
of this result is its essentially discrete character: the c
tinuum limit implies fixing m and lettingN→`, then the
expression~26! vanishes.

To the best of our knowledge, the analyses presen
above for the cases of the deterministic and spontaneous
constitute the first explicit consideration of the collisio
induced momentum generation in nonintegrable dynami
lattice models. In the general case~DfÞ0!, the SB and
momentum generation are contributed to by both the de
ministic and spontaneous mechanisms.

V. CONCLUSION

In this work, we have studied in an analytical approxim
tion and, in detail, numerically collisions between solitons
the discrete NLS equation. We have observed and class
different outcomes, whose most notable features are var
manifestations of the SB, leading to the appearance of ei
a single moving pulse, or a pair of pulses with differe
amplitudes and speeds, after single or multiple bounces.
dependence of the outcome on the type of the collision~on-

d
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site or intersite!, initial velocity, and amplitude of the pulses
as well as the phase shift between them, was quantified.
analysis of the SB and collision-induced momentum gene
tion from nothing were developed for two qualitatively di
ferent cases, when they are accounted for by the phase
between the solitons, or modulational instability of the bro
plateau which is temporarily formed in the course of t
collision. If the collision is asymmetric relative to the lattic
the SB is explained in a simpler way by the presence of
effective Peierls-Nabarro potential. The results sugg
straightforward experimental realizations in optical wav
guide arrays, and in Bose-Einstein condensates trapped
strong optical lattice. The variety of different outcomes
the collision, and the possibilities to control them sugg
potential applications to the design of multifunctional pho
nic devices based on waveguide arrays.

Note added. Recently it was brought to our attention th
moving pulses in the DNLS equation, subject to perio
boundary conditions, were found to bifurcate from an ex
constant-amplitude traveling-continuous-wave solution@23#.
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The pulses vanish at some critical value of the nonlinea
coefficient. It is plausible that, in the limit of the infinitel
long system, this result implies the existence of genu
moving solitons in the DNLS equation. Additionally, w
have been informed that experiments are currently
progress regarding the interaction of two solitary waves
arrays of coupled optical waveguides@24#, for which the
relevant mathematical model is the one discussed herein.
focus in these experiments is on the case of the interactio
solitons with zero initial velocities~in terms of the presen
paper!, and a result coinciding with our findings is that,
the limit of the zero collision velocity, two solitons with th
zero phase difference always merge into one.
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